The Source and timing of Gold in Orogenic Gold Deposits;

slide1

A Case Study from the Giant Sukhoi Log Sediment-Hosted Deposit in Siberia

Ross R Large, Leonid V Danyushevsky, Robert J Scott, Sebastian Meffre, Zaoshan Chang CODES UTAS

Valery V Maslennekov Institute of Mineralogy, Russian Academy of Sciences

We are in for a Revolution in Gold Ore Genesis Theory

At Last we have a Technique to Place Gold into the Paragenesis of Orogenic Gold Deposits

The Technique? Laser Ablation-Q-ICPMS

slide3

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

The Technique? Laser Ablation-Q-ICPMS

CODES / AMIRA P923: Controls on the Formation and Sulfide Trace Element slide5 Signatures of Sediment-Hosted Gold Deposits

Robert Scott, Ross Large, Stuart Bull (CODES, University of Tasmania)

ES ARC Centre of Excellence in Ore Deposits

AMIRA P923: 5th Sponsors Meeting, Hobart, December 2006

Project Sponsors – Barrick , Newcrest, Newmont, Perseverance, St Barbara

Photo: Dark arsenian pyrite (<933 ppm Au) rims earlier formed diageneticor hydrothermal pyrite nodule, Roberts Mtn Fmn, Gold Quarry, Northern Carlin Trend, Nevada

AMIRA P923: STUDY AREAS

Three world-class sediment-hosted gold districts hosting deposits of contrasting style

- Carlin District, NE Nevada (50 %)
 - Periphery and host-rocks to Post-Betze-Screamer deposit (>38.6 Moz), Gold Quarry (~24 Moz)
- Central Victoria NE Tasmania (25 %)
 - Fosterville (>1 Moz), Bendigo (>34 Moz), Tarnagulla (0.56 Moz), Lefroy (~0.23 Moz, historical)
- Lena Goldfield, Siberia (25 %)
 - Sukhoi Log (>46 Moz)

Challenge to Current Beliefs Related to Orogenic Gold Deposits

Belief 1: "Gold is coming from some deep source or from crustal granites"

NO.....

Gold is Already Present in the Sedimentary Basin

CODES

Belief 2: "Graphitic Sediments are Good Trap Rocks for Gold"

Yes, But.....

Graphitic sediments are Ideal Source Rocks for Au & As plus Se, Te, V, Zn, Mo, Ni, PGE......

Belief 3: "Gold is introduced Late; i.e. Syn-tectonic or Post-tectonic"

Gold is Introduced Early; i.e. Pre-tectonic and Moved Around Late During Tectonism

Multi-stage Origin of Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Goldfield, Russia

Ross Large, Valeriy Maslennikov, Sarah Gilbert, Rob Scott, Leonid Danyushevsky and Zhaoshan Chang

Major Gold Deposits around Siberian Craton

Regional Geology

Sukhoi Log: Resource

- Sukhoi Log is a giant low grade sedimenthosted gold deposit
- Open Pit resource: 384 Mt @ 2.6 g/t Au

Geological plan and Cross Section

Exploration Grid-Sukhoi Log

CODES

Streaming |||||||| 100%

Eye alt 40117 ft

Sukhoi Log Ridge

Sukhoi Log Core Shed

Core Layout

Quartz-pyrite veins

Bedding Parallel & Folded

Previous Models

- Orogenic deposit: gold introduced and concentrated during metamorphism (Goldfarb, et al., 2005)
- Intrusion related gold deposit (Distler et al., 2004)
- Syngenetic gold deposit with remobalisation into anticlinal core during metamorphism (Buryak, 1982; Kribek, 1991)
- Three suggested sources of gold: metamorphic fluids, magmatic fluids, exhalation into seawater
- Recent detrital zircon dating in our lab by Sebastian Mefre shows the host sediments have a maximum age of ~600 Ma
- The main metamorphic event has been dated at 520 Ma (Laverov et al., 2000), and emplacement age of local granitoids is around 360 Ma (Rundquist el al., 1992)

Aims of this phase of the Research

- To determine the sulfide paragenesis at Sukhoi Log
- To determine the gold and trace element contents and associations for the various stages of pyrite
- Was gold introduced during sedimentation & diagenesis, or later during metamorphism and/or granite intrusion, or at several times?

Pyrite 1

- Fine grained stratiform py
- Three types -
 - micron sized pyrite clusters
 - Framboidal pyrite
 - "sooty" pyrite
- Interpretation: syn-sed. to early diagenetic

Microtexture of the stratiform Py1;

Clusters of fine 1-2 micron py

Py1 Chemistry

- Py1 is rich in a wide range of trace elements
- Gold content varies from 0.44 to 12.10 ppm; mean = 3.32 ppm Au
- Arsenic varies 180 to 14,000 ppm ; mean = 1900 ppm As
- Elements which show a positive correlation with Au in Py1; Cu, Ag, Pb, As, Sb, Te

Py1 Chemistry

Laser analysis: Fe09A17 10000000 Fe standard 1000000 288 ppm Pb 170 ppm Co 100000 650 ppm As Fe57 84 ppm Sb Co59 10000 175 ppm Ni • Ni60 5 ppm Bi Cu65 Ag 6 ppm 1000 -As75 Ag107 0.75 ppmAu Sb121 100 Pt195 Au197 Pb208 10 Bi209 1 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139

Py2 euhedra overgrow and replace Py1

100 µm

Pyrite 2

- Clear py euhedra
- Overgrows and surrounds py 1
- Interpretation: early diagenetic; may involve recrystallization of pyrite 1

Py1 overgrown by Py2 overgrown by arsenopyrite

Py2 Chemistry

- Py2 is depleted in most trace elements compared to Py1; Au, Ag, Cu, Pb, Te, Zn, Sb
- As, Ni and Se remain at similar levels to Py1
- Gold content varies from 0.02 to 13.00 ppm; mean = 1.02 ppm Au
- Arsenic varies 2 to 18,550 ppm ; mean = 4260 ppm As

Pyrite 3

- Inclusion rich
- Irregular outlines
- Fluffy or porous texture
- No obvious structural fabric
- Aligned along bedding
- Confined to sandstone layers
- Interpretation: diagenetic or metamorphic??

Pyrite 3

inclusions of po, cpy, sp and silicates
no aligned internal fabric

Pyrite 3: internal fabric revealed after etching indicates Py3 most likely has a late diagenetic to early metamorphic timing overprinting a weak D1 sandstone fabric

CODES

CODES

Pyrite 3, also has Au inclusions

Py3 Chemistry

- Although Py3&4 may contain microscopic gold grains, the pyrite itself is depleted in gold compared to Py1&2
- Gold exhibits two populations: a low gold and high gold population.
- Over 80% of Py3 is the low gold population which varies from 0.05 to 2.2 ppm; mean = 0.16 ppm Au
- The minor high gold population varies from 4 to 82 ppm gold, with a mean of 30 ppm Au
- Arsenic varies 7 to 31,000 ppm; mean = 2900 ppm As

156-225-9

MA14A13

Py1 is enriched in Au, Pb, Cu, V, Sb, but depleted in As & Ni cf Py3

Pyrite 4 Isolated large euhedra

Pyrite 4

- Large isolated euhedral pyrite in shale
- quartz pressure shadows are common
- Internal fabric in Py4 shows the main cleavage(s)
- Abundant aligned microinclusions
- Interpretation: pyrite replaces all sediment components and inherits the structural fabric of sediments: Late metamorphic

Pyrite 4

Py4 overprinting rock fabrics

Free Gold in Py3/4

Pyrite 4/ Pyrite 5

Py4 Chemistry

- Although Py3&4 may contain microscopic gold grains, the pyrite itself is depleted in gold compared to Py1&2
- Gold content of Py4 varies from 0.02 to 1.30 ppm; mean = 0.25 ppm Au
- Arsenic varies 400 to 5560 ppm ; mean = 2270 ppm As
- Py4 is characterised by high Ti, up to 15,000 ppm (mean 1500 ppm). This relates to the abundant inclusions.

Pyrite 5

overgrows and may cut pyrite 4 (open space growth)

Pyrrhotite is common in Py 4 assemblages

Pyrite is progressively depleted in gold from Py1^{slide53} to Py5

CODES

Pyrite and Gold Paragenesis

Sedimentation- diagenesis		Metamo	Post-peak metam.		
Pyrite	Py1 	P <u>v3</u> P	P: /4	y5	Руб
gold dissolved in As-rich pyrite					
Au-Te-Pb-Bi- Ag association					
free gold					
arsenopyrite					
py-qtz veins					

Pyrite in Py-Qtz Veins

Pyrite in py-qtz veins is zoned

Pyrite in py-qtz veins

Analysis of py3 core

Inclusions of galena with dissolved Bi-Ag-Au-Te

CODES

CODES

- Bi, Ag, Au, Te are dissolved in the structure of the galena
- 1.9 wt% Bi
- 1.1 wt% Ag
- 257 ppm Au
- 423 ppm Te

Gold Events at Sukhoi Log

- The stratiform py1 represents the first (SEDEX) gold event (Au-As) from shallow basinal fluids
- The dageneitic cores to the bedding parallel veins represent the second gold event (Au-Ag-Pb-Te-Bi) from deeper basinal fluids
- On-going metamorphism led to remobalisation of free gold into later, more radiogenic, pyrite generations

Pyrite and Gold Paragenesis

Sedimentation- diagenesis		Metamorphism		Post-peak metam.	
Pyrite	Py1 	Py3 Py	/4	Py5	_ Py(
gold dissolved in As-rich pyrite					
Au-Te-Pb-Bi- Ag association					
free gold					
arsenopyrite					
py-qtz veins					

Bodaibo Basin: Reduced and Gold-rich

Key message: Free gold in late pyrite does not mean the timing of gold is late, ie. syn- or post-tectonic

slide64

Much gold is introduced early into sedimentary and volcanic basins, where it resides in arsenian pyrite

Thank You

